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A generalized Fourier-based method for the
analysis of 2D Moire envelope-forms in
screen superpositions
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Abstract . When repetitive structures such as line-gratings or dot-screens are
superposed, a new pattern may become clearly visible in the superposition,
although it does not exist in any of the original structures . This phenomenon,
which in some cases appears to be very spectacular, is known as the superposition
Moire effect. In this article we analyse the 2D envelope-forms of these Moire
patterns, based on the Fourier theory, and we show how they can be derived
analytically from the original superposed structures, either in the spectral domain
or directly in the image domain. This approach not only offers a qualitative
geometric analysis of each superposition Moire, but also enables the intensity
levels of each Moire to be determined quantitatively . We first develop this
analysis method for the simple case of line-grating superpositions, and then we
generalize it to the superposition of doubly periodic structures such as dot
screens, for any order Moire . We finally show how, by means of this analysis
method, we can fully explain (and predict) the surprising envelope-forms
generated in the superpositions of screens with any desired dot-shapes, for any
order of Moire .

1 . Introduction
The superposition Moire is a well-known phenomenon which occurs when

periodic or quasi-periodic structures (such as line-gratings, dot-screens, etc .) are
superposed. It consists of a visible pattern which is clearly observed at the
superposition, although it does not appear in any of the original structures [1] .
The Moire effect between superposed structures occurs because of the geometric
distribution of dark and bright areas in the superposed image : areas in which dark
elements of the original structures cross each other contain less black than areas
where the original structure elements fall between each other and fill the white spaces
better .

Although the basic geometric properties of the Moire patterns can be found using
simple geometric or algebraic approaches [2-5], it has been shown that the best
approach for exploring the Moire phenomenon is the spectral approach, which is
based on the Fourier theory [6] . Unlike the geometric and the algebraic methods,
this approach enables us to analyse properties not only in the original images and
in their superposition but also in their spectral representations, and thus it offers a
more profound insight into the problem and provides indispensable tools for
exploring it . Moreover, the additional dimension offered by the impulse amplitudes
in the spectrum (in addition to their geometric locations) also enables a quantitative
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analysis of the Moire intensity levels, in addition to the qualitative geometric analysis
of the Moire, already offered by the earlier approaches .

In this article we will concentrate on the analysis of the envelope-form and the
intensity levels of Moire patterns which are obtained in the superposition of periodic
dot-screens (such as halftone screen films of the type used in the printing world for
producing grey level images) . As shown in figure 1, such screen superpositions may
result in very spectacular Moire patterns, which are even more striking when the
superposed screens (films) are slowly moved on top of each other . Based on the
Fourier approach, we will introduce a generalized method for extracting the intensity
profile (or the envelope-form) of such superposition Moires : first between
line-gratings (in section 3), and then (in section 4) between general two-dimensional
(2D) periodic structures, such as dot-screens with any desired dot-shapes . Extending
the duality between the image and the spectral domains to include Moire-envelopes
as well, we will show how the extraction of the Moire-envelope can be interpreted
in either of these two domains . We will also see how results which have previously
been derived using quite complicated mathematical methods can easily be obtained
for any periodic screens as a simple special case of our approach . Finally, we will show
(in sections 5 and 6) how this analysis method fully explains the surprising
envelope-forms of the Moire patterns obtained between screens of any desired dot
shapes, including in the case of higher-order Moires .

2 . Background
In this article we concentrate on 2D images in the (x, y) plane and their 2D spectra

in the (u, v) plane, which are obtained by the 2D Fourier transform . In fact, we
restrict ourselves only to some specific types of 2D images, such as line-gratings or
dot-screens ; in this section we list the basic properties of the image types we are
concerned with, and review the implications of these properties both in the image
and in the spectral domains .

First, we only deal here with monochromatic (black and white) images . In this
case each image can be represented by a reflectance function, which assigns to any
point (x, y) of the image a value between 0 and 1 representing its light reflectance :
0 for black (i .e . no reflected light), 1 for white (i .e . full light reflectance), and
intermediate values for in-between shades . In the case of transparencies, the
reflectance function is replaced by a transmittance function defined in a similar way .
Since the superposition of black and any other shade always gives black, this suggests
a multiplicative model for the superposition of monochromatic images . Thus, when
N monochromatic images are superposed, the reflectance of the resulting image is
given by the product of the reflectance functions of the individual images :

r(x, y) = ri(x, y)r2(x, y) . . . rN(x, y) .

	

(1)

If we denote the Fourier transform of each function by the respective capital
letter and the 2D convolution by **, we get using the convolution theorem [7, p . 18,
8, p . 244]

R(u, v) = R1(u, v)**R2(u, v)'* . . .** RN (u, v) .

	

(2)

Second, we are basically interested in periodic images defined on the continuous
(x, y) plane, such as line gratings or dot screens, and their superpositions .
This implies that the image spectrum in the (u, v) plane is a 2D nailbed of discrete
impulses, given by the Fourier series decomposition of the image [8, p . 204] . In the
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Figure 1 . The superposition of binary (B/W) dot-screens may yield Moire effects with
spectacular envelope-forms . This figure demonstrates that the shape and the surface of
the screen dots only affect the shape and the intensity levels of the :Moire-envelope ; but
the period and the direction of the Moire remain unchanged (unless the angles and
frequencies of the superposed screens are modified) . In all the cases (a)-(d), two screens
with identical frequencies and gradually increasing dots are superposed with the same
angle difference of 4° ; this implies that in all of the cases the Moire in question is a
(1,0,-1,0) Moire. (a) Two screens with black circular dots ; (b) top screen with
black circular dots and bottom screen with black square dots ; (c) top screen with black
triangular dots and bottom screen with black circular dots ; (d) top screen with
black square dots and bottom screen with black circular dots .
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Figure 2 . The geometric location and amplitude of impulses in the 2D spectrum . To each
impulse is attached its frequency vector, which points to the geometric location of the
impulse in the spectrum plane (u, v) .

case of line gratings, the nailbed is reduced to a one-dimensional (1D) comb of
impulses in the (u, v) plane. A strong impulse in the spectrum indicates a pronounced
periodic component in the original image at the frequency and direction of that
impulse .

Each impulse in the 2D spectrum is characterized by two properties : its geometric
location (or impulse location), and its amplitude (see figure 2). To the geometric
location of any impulse is attached afrequency vector fin the spectrum plane, which
connects the spectrum origin with the geometric location of the impulse . This vector
can be expressed either by its polar coordinates (f, a), where a is the direction of the
impulse and f is its distance from the origin (i .e . its frequency in that direction) ; or
by its Cartesian coordinates (fu , f, ), where f„ and f,; are the horizontal and vertical
components of the frequency . In terms of the original image, the geometric location
of an impulse in the spectrum determines the frequency f and the direction a of the
corresponding periodic component in the image, and the amplitude of the impulse
represents the intensity of that periodic component in the image . (Note that if the
original image is not symmetric about its origin, the amplitude of each impulse in
the spectrum may also have a non-zero imaginary component .)

However, the question whether or not an impulse in the spectrum represents a
visible periodic component in the image strongly depends on properties of the
human visual system . The fact that the eye cannot distinguish fine details above a
certain frequency (i .e . below a certain period) suggests that the human visual system
model includes a low-pass filtering stage . This is a bidimensional bell-shaped filter
whose form is anisotropic (since it appears that the eye is less sensitive to small details
in diagonal directions such as 45° [9, pp. 79-84]) . However, for the sake of simplicity
this low-pass filter can be approximated by the visibility circle, a circular step function
around the spectrum origin whose radius represents the cut-off frequency (i .e . the
threshold frequency beyond which fine detail is no longer detected by the eye) .
Obviously, its radius depends on several factors such as the contrast of the
observed details, the viewing distance, light conditions, etc . If the frequencies of
the original image elements are beyond the border of the visibility circle in the
spectrum, the eye cannot see them; but if a strong enough impulse in the spectrum
of the image superposition falls inside the visibility circle, then a Moire effect
becomes visible in the superposed image .

The Moire patterns obtained in the superposition of periodic structures such as
line gratings or dot-screens can be described at two different levels . The first, basic
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Figure 3 . A(1,-1) Moire between two identical binary gratings with the same periods and
angles and with opening ratios (i .e . white-width/period ratios) of : (a) 0 . 75 ; (b) 05 ;
(c) 0 . 25 . (d), (e) and (f) show the respective Moire profiles in terms of reflectance, as
received from the mathematical model . (g), (h) and (i) show the same Moire profiles after
their adaptation to the human visual perception, i .e. in terms of logarithmic density .

level only considers the planar properties (periods or frequencies and angles) of
the repetitive structures in the original images and in the produced Moire patterns .
The second level also includes the amplitude properties of the original structures and
of their Moire patterns, which can be added to their planar 2D description as a
third dimension, describing their intensity or grey-level variations . This three-
dimensional (3D) description of the Moire is called its intensity profile or envelope-
form . Note that the term profile originates from the simple Moire case obtained in
the superposition of two line-gratings (see figure 3), in which a 1D plot describing
the projection of the Moire-bands on a perpendicular plane is enough to describe
the form (profile) of the Moire . However, in more complex cases where the Moire
forms are no longer simple bands, the term envelope is more appropriate for
describing the shape and the intensity variations of the Moire pattern .

According to the convolution theorem (equations (1), (2)), when N line-gratings
are superposed in the image domain, the resulting spectrum is the convolution of

their individual spectra. This comb (or nailbed) convolution can be seen as an
operation in which frequency vectors of the individual spectra are added vectorially,
while the corresponding impulse amplitudes are multiplied . More precisely, each
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impulse in the spectrum-convolution is generated during the convolution process
by the contribution of one impulse from each individual spectrum: its location is
given by the sum of their frequency vectors, and its amplitude is given by the product
of their amplitudes . This permits us to introduce an indexing method for denoting
each of the impulses of the spectrum-convolution in a unique, unambiguous way .
The general impulse in the spectrum-convolution will be denoted the (k1,	kN)
impulse, where k; is the index (harmonic), within the comb of the ith spectrum, of
the impulse that this ith spectrum contributed to the convolution . Using this formal
notation we therefore have the following result :

The geometric location of the general (k1, k2	kN) impulse in the spectrum-
convolution is given by the vectorial sum (or linear combination)

fk,,k2, . . .,kN= klfl + k2f2 + . . . + kNfN,

	

(3)

and its amplitude is given by

akt,k2, . . .,kN - ak 1 )ak 2~ . . .ak ,

	

( 4 )

where f; denotes the frequency vector of the fundamental impulse in the spectrum
of the ith grating, and k ;f ; and a are respectively the frequency vector and the
amplitude of the k ;th harmonic impulse in the spectrum of the ith grating .

The vectorial sum of equation (3) can also be written in terms of its Cartesian
components. If f, are the frequencies of the N original gratings and B; are the angles
that they form with the positive horizontal axis, then the coordinates (f, , f2.) of the
(k l , k2, . . ., kN) impulse in the spectrum-convolution are given by

fuk~,k2, . . . ,k,ti = k1 fl cos 0 + k2f2 cos 02 + . . . + kNfN cos 8N ,

fik, .k2 kN = k1fl sin 01 + k2f2 sin 02 + . . . + kNfN sin °N .

	

(5)

Therefore, the frequency, the period and the angle of the considered impulse
(and of the Moire it represents) are given by the length and the direction of the vector
fk ,, k 2 , . . ., RN, as follows :

f=(fu+fZ)~~2> TM= 1/f, PM arctan(f/f) .

	

(6)

Note that in the special case of N = 2 gratings, when a Moire effect occurs due
to the (1, -1)-impulse in the convolution, equations (5)-(6) are reduced to the
familiar geometrically obtained formulas of the period and angle of the Moire effect
between two gratings [2, 5]

_

	

T1T2

	

Tl sin a
T'

	

T Z +T Z 2T T

	

~~2' smtPM = 2 T Z 2T T

	

2 ' (7 )( ~

	

z -

	

~ 2coca)

	

(T +i

	

z -

	

i 2 coca)
(where T1 and T2 are the periods of the two original gratings and x is the angle
difference between them, 01 - 02 ) . When Tl = T2 this is further simplified into the
well-known formulas [1, 3]

T
Tom,- 2 sin (a/2)' ~`'~= 90° - a/2 .

	

(8)

Finally, a word about the notations used for the superposition Moires . In this
article we use a systematic notational formalism, which provides an unambiguous
means for identifying the various Moire effects . As we have seen, a (k 1 , k2, . . . , kN)
impulse in the spectrum-convolution which falls close to the spectrum origin, inside
the visibility circle, represents a Moire effect in the superposed image . We call the
N-grating Moire whose fundamental impulse is the (k1, k2, . . . , kN) impulse in
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the spectrum-convolution a (kl, k2, . . . , kN) Moire ; the highest absolute value in the
index-list is called the order of the Moire. Note that in the case of doubly periodic
images, such as in regular dot screens, each superposed image contributes two
perpendicular frequency vectors to the spectrum, so that in equations (3)-(5) above
N should be replaced by 2N (twice the number of superposed images) .

3 . Extraction of the profile of a Moire between superposed line-gratings
Assume that we are given two line-gratings (see figure 4) . The spectrum of each

of these line-gratings consists of an infinite impulse-comb, in which the amplitude
of the kth impulse is given by the coefficient of the k-harmonic term in the Fourier
series development of that line-grating . When we superpose (i .e . multiply) these two
line-gratings the spectrum of the superposition is, according to the convolution
theorem, the convolution of the two original combs, which gives an oblique nailbed
of impulses (figure 4(f)) . Each Moire which appears in the superposition of the
gratings is represented in the spectrum of the superposition by a comb of impulses
which is generated in the convolution of the combs of the original line-gratings . If
a Moire in the superposition is visible, it means that in the spectral domain the
fundamental impulse-pair of the Moire comb is located inside the visibility circle,
close to the spectrum origin ; this impulse determines the period and the direction
of the Moire . Now, by extracting from the spectrum convolution only this infinite
Moire comb and taking its inverse Fourier transform, we can reconstruct, back in
the image domain, the isolated contribution of the Moire in question to the image
superposition ; this is the intensity profile (or envelope form) of the Moire (see figure
4(g), (h)) . In the present section we will see in detail how the profile of any Moire
between superposed line-gratings can be extracted, either from the spectral domain,
or directly from the image domain .

Let us denote by c the amplitude of the nth impulse of the Moire comb . If the
Moire in question is a (k 1 , k2) Moire, the fundamental impulse of its comb is the
(k1, k2) impulse in the spectrum convolution, and the nth impulse of its comb is the
(nkl, nk2) impulse in the spectrum convolution . Therefore we have

cn = ank~, nky

and according to equation (4) we get
(1)

	

(2)cn - ank~ank2>
where aand a= 2~ are the respective impulse amplitudes from the combs of the first
and of the second line-gratings. In other words, we can say :

Result 3 .1
The impulse amplitudes of the Moire comb in the spectrum convolution are

received by a simple term-by-term multiplication of the combs of the original
superposed gratings (or subcombs thereof, in case of higher-order Moires) .

For example, in the case of a (1, -1) Moire (as in figure 4(f)) the amplitudes
of the Moire comb impulses are given by : c n = an , - n = and in the case of the
second-order (1, -2) Moire (see figure 5) the impulse amplitudes of the Moire comb
are given by : c n = a n , -2 n = a i ~a~~~2n (note that if the original gratings are symmetric
about the origin, then a~) = a; 2 ~) . Now, since we know also the exact locations of the
impulses of the Moire comb (according to equation (3)), the spectrum of the isolated
Moire in question is fully determined, and we can therefore reconstruct, back
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Figure 5 . Binary gratings (a) and (b) as in figure 4 but with (b) having half the frequency,
and their superposition (c) ; (d), (e) and (f) are their respective spectra . The visibility
circle in the centre of the spectrum (f) contains the impulses with frequency vectors
f~ - 2f2 and 2f2 - f,, which originate from the second harmonic of f2 , and represent the
fundamental impulse pair of the Moire . Note that the Moire seen in (c) is a (1,-2)
Moire, but it still has the same angle and frequency as the (1,-1) Moire of figure 4,
and only its intensity is weaker .

in the image domain, the profile (envelope form) of the Moire . This can be
done, formally speaking, by taking the inverse Fourier transform (FT) of the
isolated Moire comb . Practically, this can be done either by interpreting the Moire
comb as a Fourier series development, and reconstructing the Moire profile it
represents in the image domain by summing up the corresponding sinusoidal
functions (up to the desired precision) ; or, more efficiently, by approximating the
continuous inverse FT of the isolated Moire comb by means of the inverse discrete
FT (using fast FT) .

Result 3 .1 was already discovered by Patorski et al . [10, pp. 444-446], who also
realized that in the particular case of two rectangular line-gratings the product comb
(the comb of the Moire) is in fact the Fourier series development of a trapezoidal
(or triangular) periodic wave . This explains, back in the image domain, the
trapezoidal (or triangular) profile shape of the Moire between two binary gratings
(see figure 3 (a)-(f) or figure 3 in [10]) . But what Patorski et al . did not realize in their
article is that this term-by-term multiplication of the original combs (i .e. the
term-by-term product of the Fourier series of the two original gratings) can be
interpreted according to the following theorem, which is the equivalent of the
convolution theorem in the case of periodic functions [11, p .36, 12, p.166] :

1845
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T-convolution theorem
Let f(x) and g (x) be functions of period T integrable on a one-period interval

(0, T), and let {F} and {G} (for n = 0, ± 1, ± 2, . . .) be their Fourier series
coefficients. Then the function

T

h(x) = T J
f(x - x')g(x') dx',

	

(9)
0

which is called the T-convolution off and g and denoted by f*g is also periodic with
the same period T and has Fourier series coefficients {Hn } given by : FI = F G n for
all integers n .f

The T-convolution theorem can be rephrased, in a less rigorous but more
illustrative way, as follows : if the spectrum of f(x) is a comb with fundamental
frequency of 1 / T and impulse amplitudes {F}, and the spectrum of g (x) is a comb
with the same fundamental frequency and impulse amplitudes {G}, then the
spectrum of the T-convolution f*g is a comb with the same fundamental frequency
and with impulse amplitudes of {FnGn } . In other words, the spectrum of the
T-convolution of the two periodic images is the product of the combs in their
respective spectra .

We would now like to apply this theorem to the case where f(x) and g (x) are the
two given line gratings . Using this theorem, the fact that the comb of the
(1, -1)-Moire in the spectral domain is the term-by-term product of the combs of
the two original gratings (Result 3 .1) could be interpreted back in the image domain
as follows :

The profile of the (1, -1)-Moire generated in the superposition of two
line-gratings with identical periods T is the T-convolution of the two original
line-gratings . $

However, there still remains here a certain difficulty. The T-convolution
theorem requires that f(x) and g(x) have the same period T, and moreover, the
resulting T-convolution f *g also has that same period. This requirement is necessary

t Note that T-convolution (also called cyclic convolution) is the periodic equivalent of the
normal convolution with integration limits of ( - , ), which cannot be used in the case of
periodic functions (see [16], pp . 157-158) . It is interesting to note that in general the normal
convolution of a single period of f with a single period of g is not equal to a single period of
the T-convolution f*g . Such an equality only occurs in cases in which the normal convolution
of the two single periods is not longer than the period T ; otherwise the outer ends which exceed
the boundaries of each convolution period T inevitably penetrate (additively) into the
neighbouring periods in the T-convolution, thus generating a cyclic wrap-around effect which
does not exist in the case of normal convolution . The discrete counterpart of the cyclic
convolution is widely used in the discrete FT theory [8, p . 362] .

$ In fact, in the case of (1, -1)-Moire it may be more appropriate to use the term
T-cross-correlation between f (x) and g (x), which is defined, following [16, p . 172] as :
f(x)*g (x) = f (x)*g ( - x). The reason is that in the case of (1, -1)-Moire we have : c„ =
which means that the second comb in the term-by-term multiplication is reflected about the
origin, and therefore represents in the image domain the reflected image g ( - x) ; the resulting
Moire-profile is therefore the T-cross-correlation of f (x) and g (x) . However, for the sake of
consistency in the general case of the (k 1 , k2	kx)-Moire, where some of the indices are
positive and others are negative, we prefer to stick to the terminology of T-convolution,
understanding that for any negative index in the list the image it represents must be reflected .
In the common case where the original images are symmetric about the origin, the two terms
coincide .
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for the definition of the integral (9) ; or equivalently, from the spectral-domain point
of view, this requirement is necessary since the comb multiplication in the spectrum
is only meaningful if the two combs have a common support (i .e . their impulse
locations in the spectrum coincide) . However, in line-grating superpositions the
original gratings may, of course, have different periods, and moreover, the resulting
Moire normally has yet a different period, TM, which is given by equation (7) . What
happens then when f(x), g(x) and f*g have different periods, T1, Tz and T,u?

From the spectral-domain point of view this difficulty is settled thanks to the
complete independence between the impulse locations and the impulse amplitudes,
as formulated by equations (3) and (4) . The term-by-term multiplication of the
combs in the spectrum only yields the impulse amplitudes of the resulting Moire
comb, but their actual geometric locations in the spectrum are determined,
independently of the impulse amplitudes, by the frequencies and the angles of the
superposed layers (i .e . by equation (3), or by its special case, equation (7)) .

This difficulty can be also settled, in a more formal way, directly in the image
domain, by the addition of a preliminary stage before the application of the
T-convolution theorem . Before applying the theorem, the two original gratings must
be normalized, i .e . stretched (and in the 2D case also rotated) in order that their
periods coincide (or equivalently, in terms of the spectral domain : in order that their
two combs have a common support) . According to well-known results in the Fourier
theory (see Appendix A) stretching and rotation of the original gratings do not affect
the Fourier coefficients (impulse amplitudes) of their combs, but only their impulse
locations in the spectrum . Therefore, according to Result 3 .1, the amplitudes of the
Moire comb are not affected either by the normalization . This normalization,
therefore, enables the theorem to be applied even to line-gratings with periods
Tl * 7'z . Moreover, by selecting the new common period and angle of the two
normalized gratings to coincide with the period and angle of the Moire, as
determined by equations (3) or (7), the resulting T-convolution received by the
theorem will fit the actual period (and direction) of the Moire . We can summarize
the above discussion as follows .

Result 3.2
The profile of the (1, -1)-Moire generated in the superposition of two

line-gratings with periods T1 and Tz and an angle difference a can be seen from the
image-domain point of view as a two-stage process :

(1) Normalization of the original gratings (by linear stretching- and rotation-
transformations) in order to bring each of them to the period and the
direction of the Moire .

(2) T-convolution of the two normalized line-gratings . (This can be done by
multiplying their combs in the spectrum and taking the inverse FT of the
product .)

It is interesting to note that this result (for the special case of T l = T2) has already
been obtained by Harthong [13, pp .30-31], using the theory of non-standard
analysis .

Result 3 .2 can be further generalized to also cover higher-order Moires (as an
illustration, refer to the second-order (1, -2) Moire shown in figure 5) :
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Result 3 .3
The profile of the general (k1 i k2) Moire generated in the superposition of two

line-gratings with periods T I and T2 and an angle difference a can be seen from the
image-domain point of view as a normalized T-convolution of the images belonging
to the k 1 subcomb of the first grating and to the k2 subcomb of the second grating .
In more detail, this can be seen as a three-stage process :

(1) Extracting the k1 subcomb (i .e . the partial comb which contains only
every k1th impulse) from the comb of the first original line-grating, and
similarly, extracting the k2 subcomb from the comb of the second original
grating .

(2) Normalization of the two subcombs by linear stretching- and rotation-
transformations in order to bring each of them to the period and the direction
of the Moire, as they are determined by equation (3) .

(3) T-convolution of the images belonging to the two normalized subcombs .
(This can be done by multiplying the normalized subcombs in the spectrum
and taking the inverse FT of the product .)

In conclusion, we see that thanks to the T-convolution theorem the duality
between the image and the spectral domains is further extended to include the Moire
profiles as well . This enables us to present the extraction of the Moire-profile
between two gratings in either of the two domains . From the spectral point of view,
the profile of any (k1, k2) Moire between two superposed ( = multiplied) gratings is
obtained by extracting from their spectrum convolution only those impulses which
belong to the (k1 k2) Moire comb, thus reconstructing back in the image domain only
the isolated contribution of this Moire to the image of the superposition . On the other
hand, from the point of view of the image domain, the profile form of any (k 1 , k2)
Moire between two superposed gratings is a normalized T-convolution of the images
belonging to the k1 subcomb of the first grating and to the k2 subcomb of the second
grating .

The importance of the image-domain interpretation of the Moire-profile as a
T-convolution is not in the actual calculation of the profile, which is much more
efficiently done in the spectral domain (as a term-by-term multiplication followed
by an inverse FT) . But as we will see later, this image-domain interpretation of the
Moire-profile will have an important role, thanks to the new light it sheds on the
understanding of the Moires and their envelope-forms .

4 . Extension of the Moire extraction to the general 2D case
We have seen above how the envelope form of a Moire in the superposition

of two line-gratings can be extracted from the Moire-comb in the spectrum, or
directly from the superposed images . How can this process be generalized to
the superposition of doubly periodic images such as dot screens, where the
Moire effect in the superposition is really of a 2D nature (Moire cells rather than
Moire bands)?

Let f (x, y) be a doubly periodic image (for the sake of simplicity we assume that
f (x, y) is periodic in two orthogonal directions, 01 and 01 + 90°, with an identical
period T I in both directions). Its spectrum F(u, v) is a nailbed whose impulses are
located on a regular lattice L1 (u, v), rotated by the same angle 0 1 and with period of
1/T1 ; the amplitude of a general (k1, k2) impulse in this nailbed is given by the
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coefficient of the (k1, k2) harmonic term in the 2D Fourier series development of
the periodic function f (x, y) .f

The lattice L t (u, v) can be seen as the 2D support of the 3D nailbed F(u, v) on
the plane of the spectrum, i.e. the set of all the nailbed impulse locations . Its unit
points (0, 1) and (1,0) are situated in the spectrum at the location vectors f1 and f2
of the two perpendicular fundamental impulses of the nailbed F (u, v) . Therefore the
location wl in the spectrum of a general point (k1, k2) of this lattice is given by a linear
combination of f l and f2 with the integer coefficients k 1 and k2i and the location w2
of the perpendicular point (- k2, k1) on the lattice can also be expressed in a similar
way :

w1 = k,f 1 + k2f2,

	

(10)
W2 = - k2f, + k,f2 .

Let g (x, y) be a second doubly periodic image whose periods in the two
orthogonal directions 02 and 02 + 90° are T2 . Again, its spectrum G (u, v) is a nailbed
whose support is a regular lattice L2 (u, v), rotated by 02 and with a period of 1 / T2 .
Since the unit points (0, 1) and (1, 0) of the lattice L 2 (u, v) are situated in the spectrum
at the location vectors f3 and f4 of the two perpendicular fundamental impulses of
the nailbed G (u, v), the location w3 of a general point (k3, k4) of this lattice and the
location w4 of its perpendicular twin (- k4, k3) are given by

w3 = k3f3 + k4f4,

	

(11)
w4 = - k4f3 + k3f4 .

Assume now that we superpose (i.e . multiply) f (x, y) and g (x, y) . According to
equations (1) and (2), the spectrum of the superposition is the convolution of the
nailbeds F (u, v) and G (u, v) ; this means that a centred copy of one of the nailbeds
is placed on top of each impulse of the other nailbed (the amplitude of each copied
nailbed being scaled down by the amplitude of the impulse on top of which it has
been copied) . This convolution gives a `forest' of impulses scattered throughout the
spectrum, which are generally not even located on a common lattice (since the
product of two periodic functions is generally not periodic, but rather almost-
periodic ; its spectrum is still impulsive, but its support is no longer a lattice and it
may even be everywhere dense [14]). This is demonstrated in figure 6(a), which
shows the locations of the impulses in the spectrum convolution, in a typical case
where no Moire effect is visible in the superposition (note that only impulses up to
the third harmonic are shown) .

Figure 6(b) and 6(c), however, show the impulse locations received in the
spectrum convolution in typical cases in which the superposition does generate a
visible Moire effect, say a (k1, k2, k3, k4) Moire . As we can see, in these cases the d .c .
impulse at the spectrum origin is closely surrounded by a whole cluster of impulses .
The cluster impulses closest to the d .c. inside the visibility circle, are the
(k1, k2, k3 i k 4) impulse of the convolution, which is the fundamental impulse of the
Moire in question,$ and its perpendicular counterpart, the (- k2, k1, - k 4 , k3 )

t Obviously, some (or even most) of the impulses on the lattice L (u, v) may have a zero
amplitude : as in the case off (x, y) = cos (x) + cos (y), for instance .

$ Note that this impulse is generated in the convolution by the (k 1 , k2)-impulse in the
spectrum F (u, v) of the first image and the (k3, k 4)-impulse in the spectrum G (u, v) of
the second image .
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Figure 6 . The spectrum of the superposition of two dot-screens with identical frequencies
(fi = fz = 80) and with an angle difference of : (a) a = 22 . 5° ; (b) a = 35° ; (c) a = 5° .
Only impulse locations are shown in the spectra, but not their amplitudes . Encircled
points denote the locations of the fundamental impulses of the two original dot-screens .
Large points represent convolution impulses obtained from the fundamental impulses
of the original spectra (i .e . (k 1 , k2 i k 3 , k 4 ) impulses with k; = 1, 0, or -1) ; smaller points
represent convolution impulses obtained from higher harmonics (only impulses up to
the third harmonic are shown) . The circle around the spectrum origin represents the
visibility circle . Note that while in (a) no significant impulses are located inside
the visibility circle, in (b) the spectrum origin is closely surrounded by the
impulse-cluster of the (1, 2, -2,-I) Moire, and in (c) the spectrum origin is closely
surrounded by the impulse-cluster of the (1, 0, -1, 0) Moire .

impulse, which is the fundamental impulse of the Moire in the perpendicular
direction. (Obviously, each of these two impulses is also accompanied by its
respective symmetrical twin to the opposite side of the origin .) The locations of these
four impulses are marked in figures 6(b) and 6(c) by : a, -a, b and -b. Note that
in figure 6(b) the impulse cluster belongs to the second order (1, 2, -2, -1)-Moire,
while in figure 6(c) the impulse cluster belongs to the first order (1, 0, -1, 0)-Moire,
and consists of another subset of impulses from the spectrum convolution .

If we look attentively at the impulse cluster surrounding the d .c . we can see that
this cluster is in fact a nailbed whose support is the regular lattice which is spanned
by a and b, the locations of the fundamental Moire impulses (k,, k2, k3 , k4 ) and
(- kz , k1, - k4 , k3) . This infinite impulse cluster represents in the spectrum the
(k i , kz, k3i k4)-Moire, and its basis vectors a and b (the locations of the fundamental
impulses) determine the period and the two perpendicular directions of the Moire .
This impulse cluster is in fact the 2D generalization of the Moire-comb that we had
in section 3 (in the case of line-grating superpositions) . We will call the infinite
impulse cluster of the (k,, k2, k3, k 4)-Moire the (k,, k 2 , k 3 , k4)-cluster, and we will
denote it by : Mk,, k2 ,k3 , k4 (u, v) . If we extract from the spectrum of the superposition
only the impulses of this infinite cluster we get the 2D Fourier series development
of the periodic envelope form of the (k1, k2, k 3 , k4 ) Moire; in other words, the
amplitude of the (i, j)th impulse of the cluster is the coefficient of the (i, j) harmonic
term in the Fourier series development of the periodic Moire envelope . By taking
the inverse 2D FT of this extracted cluster we can analytically reconstruct in the
image domain the envelope of this Moire . If we denote the envelope of the
(k1, k 2 , k3i k4) Moire between the superposed images f (x, y) and g (x, y) by
mk1,kz ,k3 ,k4(x,y), we therefore have

mk,, k2, k3 , k4(x, y) = FT

	

{-2W , k2, k3 , k4(U, v)} .

50 0

(c)
50 100



Generalized method for analysis

	

1851

The envelope (or intensity profile) of the (k1, k2, k3, k4) Moire between the
superposed images f (x, y) and g(x, y) is therefore a function mk1,k2,k3,k4(x,y) in the
image domain whose value at each point (x, y) indicates quantitatively the intensity
level of the Moire in question, i .e . its particular intensity contribution to the image
superposition . Note that although this Moire is visible both in the image
superposition f (x, y) g (x, y) and in the extracted envelope mk 1 , k 2 , k3, k4 (x, y), the latter
does not contain the fine structure of the original images f (x, y) and g (x, y) but only
the isolated form of the extracted (k1 i k2, k 3i k4) Moire; see for example the difference
between figure 4(c) (the image superposition) and figure 4(g) (the extracted envelope
of the (1,-i) Moire). Moreover, in a single image superposition f (x, y)g (x, y) there
may be visible several different Moire simultaneously ; but each of them will have
a different Moire envelope mk1,k2.k3,k4 (x,y) of its own .

It should be noted that the (k 1 , k 2 , k3, k4) cluster exists in the spectrum
convolution even is cases like figure 6(a) where no Moire effect is visible in the
superposition. However in such cases the fundamental impulses (k1 , k2, k3, k 4) and
(- k2, k1, - k4, k3) are located at a bigger distance from the d .c . beyond the visibility
circle . Note that at the other extremity, when the (k1, k2, k3, k 4 ) Moire reaches its
singular point and its period becomes infinitely large (i .e . its frequency becomes
zero), the whole infinite Moire cluster around the spectrum origin collapses down
on to the d .c. impulse .

Let us now find the expressions for the location, the index and the amplitude of
the impulses of the (k 1 , k2, k 3 , k4) Moire cluster . If a is the location vector of the
(k1, k2 , k3, k 4) impulse in the convolution and b is the orthogonal location vector of
the (- k2 k1, - k4, k3) impulse, then we have according to the convolution rules
(equation (3)) :

a = k1f1 + k2f2 + k 3 f 3 + k4f4,

	

(12)
b = - k2 f 1 + k 1f2 - k 4f 3 + k 3 f 4 .

Since a and b are the basis vectors which span the lattice LM (u, v), the support of
the Moire cluster, the location of the (i,j)th impulse within this Moire cluster is given
by the linear combination is + jb :

is + jb = ( ik, -jk 2)f 1 + (ik2 + jk1)f2 + (ik3 - jk4)f3 + (ik4 + jk 3 )f4 .

	

(13)

In terms of the impulse indices in the original nailbeds F (u, v) and G (u, v), the
index of the (i, j)th impulse in the (k 1 , k2, k3, k4) Moire cluster is therefore

(ik1 -jk2, ik2 + jk,, ik 3 -jk 4 , ik 4 + jk3) .

	

(14)

This means that the (k,, k2, k 3 , k 4) Moire cluster is the subset of the full
spectrum-convolution which only contains those impulses whose indices are of the
type (14) .

Finally, the amplitude ci,1 of the (i, j)th impulse in the (k1, k2, k3, k4) Moire cluster
is given by

ci,, = aik 1 -jk2, ik 2 + jk 1 , ik3 -jk4 , ik4 +1k3,

and according to the convolution rules (equation (4)) we get
_ a(1)

	

a(2)

	

a(3)

	

a (4)
ci,i - ik, - jk2 ek2+jk~ 1k3-jk4 ik4+ik3 •

But since we are dealing here with the superposition of two orthogonal layers
(dot screens) rather than with a superposition of four independent layers (gratings),
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it is more meaningful to group these amplitudes in pairs, so that each component
corresponds to an impulse amplitude in the nailbed F(u, v) or G(u, v) :

c,,3 = aikU)

	

U)
1 - jk2 ,k2 +1k1 aik3 -3k q ik4 +jk3 •

	

(15)

This means that the amplitude ci,1 of the (i,j)th impulse in the (k1, k2, k3, k4) Moire
cluster is the product of the amplitudes of its two generating impulses : the
(ik1 - jk2, ik2 + jkj) impulse of the nailbed F (u, v) and the (ik 3 -jk4 , ik4 +jk3) impulse
of the nailbed G (u, v) . This can be interpreted more illustratively in the following
way .

Let us call the (k 1 , k2) subnailbed of the nailbed F (u, v) the partial nailbed of F (u, v)
whose fundamental impulses are the (k1, k2) and the (- k2, k1) impulses of F(u, v) ;
its general (i,j) impulse is the i (k i , k2) +j( - k2, k3) _ (iki - jk 2i ik2 + jki) impulse of
F(u, v) . Similarly, let the (k3, k4) subnailbed of the nailbed G (u, v) be the partial
nailbed of G (u, v) whose fundamental impulses are the (k3, k4) and the (- k4i k 3 )
impulses of G (u, v) ; its general (i,)) impulse is the (ik3 -jk4, ik4 +jk3) impulse of
G (u, v) . It therefore follows from (15) that the amplitude of the (i, j) impulse of the
nailbed of the (k1, k2, k3, k4) Moire in the spectrum convolution is the product of the
(i,j) impulse of the (k1, k2) subnailbed of F(u, v) and the (i, j) impulse of the (k3, k4 )
subnailbed of G (u, v) . This means that :

Result 4.1 (2D generalization of Result 3 .1)
The impulse amplitudes of the (k1, k2, k 3 , k4) Moire cluster in the spectrum-con-

volution are the term-by-term product of the (k1, k2) subnailbed of F(u, v) and the
(k 3 , k 4) subnailbed of G (u, v) .

For example, in the case of the simplest first-order Moire between the images
f (x, y) and g (x, y), the (1, 0, -1,0) Moire (see figure 6(c)), the amplitudes of the
Moire cluster impulses in the spectrum-convolution are given by : c tJ a~ )a~~t, 3 _, j
This means that in this case the Moire cluster is simply a term-by-term product of
the nailbeds F(u, v) and G(-u, -v) of the original images f (x, y) and g(-x, -y) . For
the second-order (1, 2, -2, -1) Moire (see figure 6(b)) the amplitudes of the Moire
cluster impulses are : ci,j = aif2j,2i+ja~zi+j,-i-2j .

Now, since we also know the exact locations of the impulses of the Moire cluster
(according to equations (3) or (5)-(6)), the spectrum of the isolated Moire in question
is fully determined, and given analytically by

Mkt,k2,k3,k4(u, v)

	

~, ci,j&a+jb(u, v),

where 8f (u, v) denotes an impulse (Dirac function) located at the frequency vector
f in the spectrum . Therefore, we can reconstruct the envelope-form of the Moire,
back in the image domain, by formally taking the inverse FT of the isolated Moire
cluster. Practically this can be done either by interpreting the Moire cluster as a 2D
Fourier series, and summing up the corresponding sinusoidal functions (up to
the desired precision) ; or, more efficiently, by approximating the continuous inverse
FT of the isolated Moire cluster by means of the inverse 2D discrete FT (using
fast FT) .

Like in the case of grating superposition (section 3), the spectral domain
term-by-term multiplication of the Moire clusters can be interpreted directly in the
image domain by means of the 2D version of the T-convolution theorem :
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2D T-convolution theorem
Let f (x, y) and g (x, y) be doubly periodic functions of period Tx , T, integrable

on a one-period interval (0 , x Tx, 0 y T,,), and let {Fm,} and {G m , n } ( for
m, n = 0, ± 1, ± 2, . . .) be their 2D Fourier series coefficients. Then the function

1

	

( T, ( Ty
h(x,y)=	 J J f(x-x',y-y')g(x',y')dx'dy',

	

(16)
TxTy o o

which is called the T-convolution of f and g and denoted by f**g is also doubly
periodic with the same periods Tx , T, and has Fourier series coefficients {Hm, „} given
by : Hm, n = Fm, nGm , n for all integers m, n .

According to this theorem we have the following result, which is the
generalization of Result 3 .3 to the general 2D case .

Result 4.2
The envelope-form of the (k1, k2, k3 i k4) Moire in the superposition of f (x, y) and

g (x, y) is a T-convolution of the (normalized) images belonging to the (k 1 , k2)
subnailbed of F (u, v) and the (k 3 , k4) subnailbed of G (u, v) . Note that, before
applying the T-convolution theorem, the images must be normalized by stretching
and rotation transformations, to fit the actual period and angle of the Moire, as
determined by equation (3) (or by the lattice LM (u, v) of the (k1, k2, k3 i k 4 ) Moire,
which is spanned by the fundamental vectors a and b) . As shown in Appendix A,
normalizing the periodic images by stretching and rotation does not affect their
impulse amplitudes in the spectrum, but only the impulse locations .

These results can be easily generalized to any (k 1 , k2	kN) Moire between any
number of superposed images by a simple straightforward extension of this
procedure .

5 . The special case of the (1,O,-1,O) Moire
In this section we will apply the results obtained above to the special case of the

(1, 0, -1, 0) Moire . We will see in particular how they explain the several striking
visual effects observed in superpositions of two dot-screens with identical periods
and a small angle difference (like in figure 1), which are clearly cases of (1, 0, -1,0)
Moire .

As we have seen in the example following Result 4 .1, in the special case of the
(1, 0, -1,0) Moire the impulse amplitudes of the Moire cluster are simply a
term-by-term product of the nailbeds F (u, v) and G(-u, -v) themselves :

= aVJa~ ;, _~. Since the impulse locations of this Moire cluster are also known
(according to equation (3)), we can obtain the envelope of the (1, 0, -1, 0) Moire by
extracting this Moire cluster from the full-spectrum-convolution, and taking its
inverse FT .

However, according to Result 4 .2 (based on the 2D T-convolution theorem), the
envelope of the (1, 0, -1,0) Moire can also be interpreted directly in the image
domain: in this special case the Moire envelope is simply a T-convolution of the
original images f (x, y) and g ( - x, - y) (after undergoing the necessary stretching
and rotations to make their periods, or their supporting lattices in the spectrum,
coincide) . This result has been previously derived by Harthong [13, p .69], using
sophisticated mathematical tools such as non-standard analysis ; as we can see, this
result is obtained here (for any doubly periodic images f (x, y), g (x, y)) as a simple
particular case of our generalized Moire extraction method .
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It should be noted here that when the superposed images are dot-screens it may
be tempting to say that the form of a single 2D period of the (1, 0, -1,0) Moire is
given by a (normalized) convolution of a single dot ( = 2D period) of the first screen
with a single dot of the second screen . However, this statement is only correct when
the convolution of the two single dots does not exceed the size of a single 2D period
(Tx X T,,) ; otherwise the outer ends of the neighbouring convolution periods
inevitably penetrate (additively) into the area of the current period . This cyclical
wrap-around effect is automatically taken care of by T-convolution, but not by the
simple convolution of single screen-dots .

Let us see now how the above T-convolution theory sheds a new light on the
Moire envelopes, and explains the striking visual effects observed in superpositions
of dot-screens with any desired dot shapes, such as in figures 1 (a)-(d) . In all of these
figures the Moire is obtained by superposing two dot-screens having identical
frequencies, with just a small angle difference x ; this implies that in all of these cases
we are dealing, indeed, with a (1, 0, -1, 0) Moire .

5 .1 . The forms of the Moire cells

5 .1 .1 . Case]
As we see in the figures, the form of the Moire cells in the superpositions is most

clear-cut and striking where one of the two screens is relatively dark (see for example
figure 7(a) and (b)). This happens because the dark screen includes only tiny white
dots, which play in the T-convolution the role of very narrow impulses with
amplitude 1 . As we can see in figure 8 (a), the T-convolution of such impulses and
dots of any shape (from the second screen) gives dots of the latter shape, in which
the zero values remain at zero, the 1 values are scaled down to the value A (the volume
or the area of the narrow white impulse divided by the total cell area, Tx X 7') ), and
the sharp step transitions are replaced by slightly softer ramps . This means that the
dot shape received in the normalized Moire-period is practically identical to the dot
shape of the second screen, except that its white areas turn darker . However, this
normalized Moire period is stretched back into the real size of the Moire period TM,

as it is determined by equations (5-6) (or in our case, according to equation (8) by
the angle difference a alone, since the screen frequencies are fixed; note that the
Moire period becomes larger as the angle a tends to 0°) . This means that the Moire
form in this case is essentially a magnified version of the second screen, where the
magnification rate is controlled only by the angle a . This interesting magnification
property of the Moire effect can be used in certain applications as a `virtual
microscope' for visualizing the detailed structure of a given screen .

5.1 .2 . Case 2
A similar, albeit somewhat less impressive, effect occurs in the superposition

where one of the two screens contains tiny black dots (see figure 7(c) and (d)) .
Tiny black dots on a white background can be interpreted as `inversed' impulses of
0 amplitude on a constant background of amplitude 1 . As we can see in figure 8(b),
the T-convolution of such inversed impulses and dots of any shape (from the second
screen) gives dots of the latter shape, where the zero values are replaced by the value
B (the volume under a one-period cell of the second screen divided by Tx X T) and
the 1 values are replaced by the value B - A (where A is the volume of the `hole'
of the narrow black impulse divided by TY X T,) . This means that the dot shape of
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Figure 7 . Demonstration of the magnification and rotation properties of the (1,0,-1,0)
'_Mire between two dot-screens . Dot-screen B consisting of black `1'-shaped dots is
superposed with two identical dot-screens of black circular dots, A and C. Each of the
three screens consists of gradually increasing dots with identical frequencies ; the
superposition angle is 4° . It can be seen that : (a), (b) : where one of the two superposed
screens is relatively dark and consists of tiny white dots, the Moire envelope-form is
essentially a magnified version of the other screen ; (c), (d) : where one of the two
superposed screens consists of tiny black dots, the Moire envelope form is essentially
a magnified, inverse-video version of the other screen . Note that in both cases the
orientation of the `1'-shaped Moire is almost perpendicular to that of the original
`1'-shaped dots of screen B. Note also the gradual Moire form transitions between (a)
and (c) and between (b) and (d), through all the intermediate, blurred stages .
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(c)

d
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(d)
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(b)

Figure 8 . (a) The T-convolution of tiny white dots (from the first screen) with dots of
any given shape (from the other screen) gives dots of essentially the same given shape .
(b) The T-convolution of tiny black dots (from the first screen) with dots of any given
shape (from the other screen) gives dots of essentially the same shape, but in inverse
video .
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the normalized Moire period is similar to the dot shape of the second screen, except
that it appears in inverse video and with slightly softer ramps . And indeed, looking
at figures 1 and 7, we see that wherever one of the screens in the superposition
contains tiny black dots, the Moire appears to be a magnified version of the other
screen, but this time in inverse video .

Note that although the amplitude difference in both of the cases above is identical
(in both cases it equals A), the perceived contrast in the first case appears to the eye
quite stronger than in the second one . The reason for this phenomenon is that the
response (or sensibility) of the human visual system to light intensity is not linear
in its nature, but rather close to logarithmic [15, pp . 27-29] . If we plot the intensities
or the Moire profiles logarithmically, i .e. in terms of density rather than in terms
of reflectance, we get a more realistic representation of the perceptual contrast of the
Moire, which corresponds better to human perception (see figure 3 (g)-(i)) .

5 .1 .3 . Case 3
When none of the two superposed screens contains tiny dots (either white or

black), the envelope form of the resulting Moire is still a magnified version of the
T-convolution of the two original screens . This T-convolution gives, as before, some
kind of blending between the two original dot shapes, but this time the resulting
shape has a rather blurred or smoothed appearance and the Moire looks less attractive
to the eye. Note in figures 1 (a)-(d) the sharp-cut Moire envelopes at the bottom and
at the top ends of the superposed area (where the white or black tiny dots are located),
and the gradual transition between them through all the intermediate, blurred stages
(where none of the screens contains tiny dots) .

Another interesting example of this type occurs when two screens with circular
black dots are superposed, unlike in figure 1(a), with their grey levels (dot sizes) in
match (see figure 9) . In this case the resulting Moire envelope form is no longer
mostly circular, as it was in figure 1(a), but rather has a squarish form at the darker
grey levels . This reflects the forms obtained by T-convolution of two periodic
screens with identical, black circular dots ; indeed, these forms tend to become
squarish as the circular dots increase, due to the cyclical wrap-around effect caused
at the four boundaries of the period cell . This can be verified by actually calculating
the T-convolution . Note that 2D T-convolutions of periodic images on the

Figure 9 . Two circular black screens which are superposed, unlike in figure 1 (a), with
matching grey levels (dot sizes) . The Moire envelope form in this case is no longer
circular as in figure 1(a), but rather has a squarish form in the darker grey levels .
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Figure 10 . T-convolution of two identical, circular black dot screens : each row shows the
T-convolution at a different grey level (screen dot size) . The T-convolution in each of
the rows is calculated digitally by multiplying the fast FTs of the two screen elements
and taking the inverse fast FT of their product . It clearly appears that at higher
grey levels the forms received by the T-convolution are rather squarish ; this agrees
perfectly with the Moire envelope forms actually obtained in the screen superposition
(figure 9) at the respective grey levels .

continuous (x, y) plane (or rather, their discretized approximations) can be easily
performed in a computer program by using 2D discrete FT : since the discrete FT
is inherently periodic, it follows that the discrete convolution obtained by using it
(i .e . by multiplying the discrete FTs of one-period cells of the original screens and
taking the inverse discrete FT of the product) is also periodic and cyclic [8, p . 362] ;
this is, indeed, the discrete counterpart of T-convolution . Figure 10 shows the
T-convolution obtained in this manner for the case of two identical black circular
dots of various sizes ; these results are identical to the Moire-forms obtained at the
corresponding grey levels in figure 9 .
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Figure 11 . A detail from figure 6(c) showing the spectral interpretation of the (1, 0, -1,0)
Moire between two dot-screens with identical frequencies and a small angle difference
a (for the sake of clarity the angle a is shown here slightly larger than in figure 6(c)) .
It is clearly seen that the low frequency vectorial sums a and b (which represent the
impulse locations of the two fundamental impulses of the (1,0,-1,0) Moire cluster)
are closely perpendicular to the directions of the two original screens : a is closely
perpendicular to f 1 and f 3 , and b is almost perpendicular to f 2 and f4 .

5 .2 . The orientation of the Moire cells
As we can see in figure 7, although the (1, 0, -1,0) Moire cells inherit the forms

of the original screen cells, they do not inherit their orientation . Rather than having
the same direction as the cells of the original screens (or an intermediate orientation),
the Moire cells appear in a perpendicular direction . This fact may seem surprising
at first, but in fact it can easily be understood using the theory developed in
section 4 .

As we have seen, the orientation of the Moire is determined by the location of
the fundamental impulses of the Moire cluster in the spectrum, i .e. by the location
of the basis vectors a and b (equation (12)) . In the case of the (1, 0, -1, 0) Moire these
vectors are reduced to

a=fl - f3,1
b=f2 -ft .

And in fact, as we can see in figures 6 (c) and 11, when the two original screens have
the same frequency, these basis vectors are rotated by about 90° from the directions
of the frequency vectors fi of the two original screens . This means that the
(1, 0, - 1,0) Moire cluster (and the Moire envelope form it generates in the image
domain) are rotated by about 90° relative to the original screens f (x, y) and g (x, y) .
Note that the precise period and angle of this Moire can be found by formulas (8)
which were derived for the (1, -1) Moire between two line-gratings with identical
periods T and angle difference of a .

Obviously, the fact that the direction of the Moire envelope is almost
perpendicular to the direction of the original screens is a property of the (1, 0, -1, 0)
Moire between two screens having identical frequencies ; in other cases the angle
of the Moire may be different . In all cases the Moire angle can be found by
equations (5)-(6) .
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(a) (b)

The vectolial sum
a =

Figure 12. (a) The (1, 0, -1, 1) Moire between two dot screens of gradually increasing black
circular dots, whose frequency ratio isf1 /f3 = \'2 = 1 . 4142 and whose angle difference
a is close to 45° . (b) The spectral interpretation of the Moire in question (for the sake
of clarity, only the frequency vectors in one of the two perpendicular directions are
shown). The low frequency vectorial sum a is the impulse location of one of the two
perpendicular fundamental impulses of the (1, 0, -1, 1) Moire impulse cluster .

6 . The case of more complex and higher order Moires
As we have seen in section 4 above, the general Moire case differs from the

elementary (1, 0, -1, 0)-Moire in that in Result 4.2 the (k 1 , k2) subnailbed of F (u, v)
and the (k3, k4) subnailbed of G (u, v) no longer coincide with the nailbeds F (u, v)
and G (u, v) themselves. Equivalently, from the image domain point of view, the
Moire envelope is no longer a (normalized) T-convolution of the original images
f (x, y) and g (x, y) themselves, but rather a T-convolution of their derived images
f' (x, y) andg' (x, y), whose spectra are the (k 1 , k2 ) subnailbed ofF (u, v) and the (k3, k4)
subnailbed of G (u, v) . This means that in the general case the envelope form of the
(k1, k2, k 3 , k 4) Moire cannot be expected to reflect the original forms of the screen
elements, but rather a more complex relationship between them .

We will demonstrate this using the case of the (1, 0, -1,1) Moire, which occurs
between two dot-screens (of circular black dots) with a frequency ratio of
~2 = 1 .4142 and an angle difference a close to 45° (see figures 12(a), (b)) . In this case
the Moire cluster which surrounds the spectrum origin has the basis vectors

a=f1-f3+f 4,~
b=f2 -f3 -f4,

and according to equation (14) it contains all the impulses of the full nailbed-
convolution whose indices are of the type : (i, j, - i - j, i -j) .

Figure 13 shows this Moire cluster for two different grey-level combinations of
the original dot screens, and the Moire envelopes obtained by taking the inverse FT
of each of these spectra . As we can see, these results accurately predict the Moire

envelope forms actually obtained in the screen superposition (figure 12) at the

corresponding grey levels .
Note that, in general, the more complex the Moire (that is, the more superposed

screens it contains, or the higher its k, indices or harmonics are), the more blurred,
low-contrast and washed-out its envelope-form looks . The most visually impressive

Moire envelope forms are normally obtained in low-order Moires between few
superposed layers .
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(c)

(b)

(d)

Figure 13 . Left images: the impulse-cluster of the (1, 0, -1, 1) Moire between two identical
dot-screens with circular black dots, analytically calculated (up to 50 harmonics) for
two different dot sizes (screen grey levels) . Right images : reconstruction of the
corresponding Moire-envelopes, obtained by taking the inverse fast FT of each of these
spectra . Note that these results agree perfectly with the Moires actually obtained in
the screen superposition at the respective grey levels (levels 55 and 70 on the scale at
figure 12) .

7 . Conclusions
The Moire envelope (or intensity profile) is a very important notion in the Moire

theory, since it represents quantitatively (and not only qualitatively) the given
Moire in the image superposition. In this article we show how, by using the
T-convolution theorem, the duality between the image and the spectral domains can
be further extended to include also the Moire envelopes . This enables us to present
the envelope extraction of any Moire between superposed screens in either of the
two domains . From the spectral point of view, the envelope of any (k1, k1, k3, k4)
Moire between two superposed (= multiplied) screens is obtained by extracting
from their spectrum convolution only those impulses which belong to the
(k 1 , k2, k3, k 4 ) Moire cluster, thus reconstructing back in the image domain only the



Generalized method for analysis

	

1861

isolated contribution of this Moire to the image of the superposition . On the other
hand, from the point of view of the image domain, the envelope form of any
(k 1 , k2, k3 , k4 ) Nloire between two superposed screens is a normalized T-convolution
of the images belonging to the (k1, k2) subnailbed of the first screen and to the (k3, k4)
subnailbed of the second screen .

Illustrating these results for the simple case of the (1,0,-1,0) Moire
between two screens, we show that in this particular case the envelope form
of the Moire is a magnified version of the T-convolution of the two original screens ;
and if the two screens have identical frequencies, the magnification rate is only
controlled by the superposition angle a . In particular, when one of the screens is
relatively dark and consists of tiny white dots, the Moire form is essentially a
magnified version of the other screen ; and when one of the screens consists of tiny
black dots the Moire envelope is a magnified inverse-video version of the other
screen .

Although our analysis method is presented in this article for the case of two
superposed layers (line-gratings or dot-screens), it is completely general and it can
be used for deriving the envelope form of any order Moires between any number
of superposed layers .
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Appendix A
We used in this article the fact that stretching and rotating a periodic (or doubly

periodic) image does not affect the impulse amplitudes of its comb (or nailbed), but
only their impulse locations in the spectrum . In this Appendix we show how these
properties can be derived, based on well-known results in the Fourier theory . We
will use here the letters p and P to denote a periodic function and its spectrum, and
the letters f and F to denote an arbitrary function (not necessarily periodic) and its
spectrum .

A .1 . Invariance of 2D FT under rotation
This property of 2D FT is valid for any function : if f (x, y) is rotated by angle

6, its spectrum F(u, v) is also rotated by the same angle . This invariance of the 2D
FT under rotation is a special case of its more complex behaviour under a general
linear transformation, which is given for instance in [16, p . 308] .

A.2 . Invariance of 2D FT of periodic functions under scaling
According to the similarity theorem [8, p . 244], for any function f (x, y) with

FT F(u, v) we have
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However, a special case of interest occurs with periodic functions, where the
spectrum is impulsive ; in this case the factor 1/lab is cancelled out, and we have
[8, p. 103]

p(ax,by)HP\a, b/ .

	

(A2)

This is normally formulated in the following way (see, for example, the 1 D
equivalent in [17, pp. 59-61]) :

Let the function p (x, y) be periodic with periods Tx, Ty and generate the
Fourier series

x

p(x,y)

	

Y a

	

mx ny
m n cos 2n l + - +

m= - x n= - x

	

Tx TY

	

m= - x n= - x

	

Tx T3' .

mx ny
bm , n s1n27< -+-

Then p ( ax, by) is periodic with periods Tx/a, T3./b, and the Fourier series it
generates preserves the same coefficients (impulse amplitudes) am , n and bm,n :

mx ny
p(ax, by)

	

am n cos 2it	 +	
/Tx/a T3,/b
x

+ ~ ~ bm n Sln 27< mx +	 fly
Tx/a T /b
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